
Adjusting of the gains is an iterative and sometimes 
costly process because it involves testing of the actual 
hardware. Sometimes much iteration is required before 
satisfactory performance is achieved. 
 Goal of this paper is to remove the need of 
hardware in the iterative process of the fourth step of 
controller implementation. Main idea is that if we can 
somehow predict how the hardware shall behave 
without having to perform experiments, then we can 
achieve our goal. In this regard, we have proposed a 
neural network based approach to learn the behavior of 
actual hardware through learning the difference 
between hardware and simulation based results. With 
our proposed approach, the controller implementation 
involves the following. First three steps of controller 
implementation shall remain the same as explained 
before. After the third step, the simulation results and 
the results of the testing of hardware are used to train 
the neural network. Once the neural network is trained, 
it can predict the behavior of the hardware using the 
results of the simulations. This enables the 
“adjustment” of gains using the simulations and the 
trained neural network only. 
 We have used inverted pendulum on a cart as a 
bench mark for demonstrating our approach. A number 
of researchers have demonstrated various controller 
designs and sensing applications using this benchmark. 
One of the most popular controller designs 
implemented on the inverted pendulum is back 
stepping based nonlinear controller design [i, ii, iii, iv]. 
Another popular approach is neural network based 
controller design [v, vi, vii, viii]. Sliding mode 
controller design approach has also been explored e.g. 
[ix]. A comparison between sliding mode and periodic 
control law has been presented in [x]. Computer vision 
based control has also been designed [xi]. Influence of 
parameters on the control on inverted pendulum is 
presented in [xii]. MATLAB simulation of the inverted 
pendulum control has been discussed in [xiii]. There 
have been some review papers on the inverted 
pendulum control as well [xiv, xv]. Fuzzy logic based 
controller design has been discussed in [xvi]. Linear 
controllers such as PID and LQR for inverted 
pendulum have been described in [xvii, xviii, xix]. A

30

Abstract-This paper presents a method for precise 
prediction of the behavior of an inverted pendulum on a 
cart system. We have improved the accuracy of 
prediction beyond what can be achieved through 
traditional model-based simulation. This improvement 
has been achieved through learning of the differences 
between simulation and experimental results. 
Specifically, a three layered neural network known in 
the literature as denoising autoencoder has been used 
for learning. The proposed method consists of three 
steps. First step is to design linear controller for the 
inverted pendulum using text book methods and 
perform simulations. Second step is to perform 
experiments on the actual hardware of the inverted 
pendulum in the laboratory using the same controller as 
in first step. Third step is to learn the difference between 
simulation results and the results from the experiments 
using neural networks. Now the learned neural network 
is used to predict lab experiment results based on 
simulations with different initial conditions and 
reference values than the ones used to train the network. 
We have designed Linear Quadratic Regulator for 
demonstration of the proposed method. Results from 
the autoencoder have been reported. It is found that the 
autoencoder can predict the actual behavior of the 
pendulum with reasonable accuracy.

Keywords-Denoising Autoencoder, LQR Controller, 
Controller Implementation

I. INTRODUCTION

 TRADITIONALway of implementing a controller for 
a dynamical system involves four steps. First the 
controller gains are computed based on the 
mathematical model. Second, the designed controller is 
simulated to predict the performance of actual 
hardware. If the results in the simulations are 
satisfactory, then in the third step, the designed 
controller is implemented on the hardware and the 
performance is observed. This performance usually 
differs from the simulation results thus leading to the 
fourth step which is to “adjust” the controller gains to 
achieve the performance depicted by the simulations. 
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results along with experimental results and results from 
using denoising autoencoders. Section VI concludes 
the paper.

II. MATHEMATICAL MODEL OF INVERTED 

PENDULUM ON A CART

 As discussed in the introduction section, there is a 
huge literature on the control and dynamics of the 
inverted pendulum on a cart system. Now a day, this 
system is part of almost every control systems 
laboratory at technical institutes and engineering 
universities. The equations presented in this section can 
be found in standard textbooks and laboratory manuals. 
The inverted pendulum used for the work in this paper 
is shown in Fig. 1. The computer screen in the 
background shows the graphical user interface for the 
apparatus that is developed in SIMULINK/MATLAB. 
On the left side of the CPU in Fig. 1 is the casing that 
encloses digital signal processing card for the 
apparatus. This card is interfaced with the CPU through 
peripheral component interconnect slot.
 Fig. 2 shows the force analysis of cart and rod 
system. N and P denote interactive force of cart and rod 
in horizontal and vertical direction respectively.

Fig. 1. Inverted Pendulum Hardware

Fig. 2. Visualization of variables in the system

commercial form of inverted pendulum on a cart is 
mobile inverted pendulum [xx, xxi, xxii]. Literature is 
available on the approaches for the design of controller 
of this application [xxiii, xxiv].
 Denoising autoencoders [xxv] on the other hand, 
arise from the artificial intelligence community. 
Specifically, the concept of deep learning [xxvi] has 
motivated the invention of these autoencoders. 
Autoencoders are basically layers of affine sigmoid 
encoding followed by affine decoding to recover the 
output from an input signal. In this paper, the input is 
the simulation results including variations in angle and 
angular rate of the pendulum as well as cart velocity 
andposition. Output of the autoencoders in our case is 
the expected experimental results corresponding to all 
the input signals. In order to be able to recover 
reasonable output, denoising autoencoders have to be 
trained using the training dataset. Training involves 
learning of the weights corresponding to neurons in the 
autoencoders. Larger the training set better is the 
expected performance of the autoencoders. But the size 
of the training set is limited by the cost of performing 
experiments to collect the training data. This is a 
limiting factor in the application of autoencoders. 
Denois ing  au toencoders  have  found  many 
applications. One of the common applications is speech 
enhancement [xxvii, xxviii, xxix, xxx]. Another 
application is emotion recognition [xxxi]. Denoising 
autoencoders have also been used for feature learning 
from EEG[xxxii]. Another interesting application is in 
fault detection and diagnosis [xxxiii]. 
 In this paper, multiple LQR controller designs 
have been simulated and tested on the inverted 
pendulum hardware. The comparison of the theoretical 
and practical results has been presented. The gaps in the 
theoretical and practical results have been discussed. A 
denoising autoencoder based approach has been used to 
depict the actual behavior of the inverted pendulum 
based on the simulation results. The depiction of the 
denoising autoencoders has been analyzed and is found 
to be pretty close to the actual behavior. Hence, the gap 
between the theoretical and practical results has been 
learnt by using samples of practical behavior as 
seeding. This type of learning enables the controller 
designer to tweak his design without having to repeat 
the experimentation. For example, we design a couple 
of controller gains and test on real hardware. Then the 
result is used to learn the gap between actual and 
simulation results. From thereon, no matter how many 
controller gains are designed, the actual behavior can 
be depicted without actually performing the 
experiment on the hardware.
 In section II of the paper, the experimental setup 
and mathematical model of the inverted pendulum is 
described. Design of LQR controller is discussed in 
section III. Section IV presents the learning 
methodology and introduction to denoising 
autoencoders. Section V includes simulation setup and 
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III. LQR CONTROLLER DESIGN

 LQR controller is a linear feedback controller in 
which system is defined using set of linear equations 
and cost is defined by a quadratic function. Purpose of 
the controller is to stabilize system at minimum 
possible cost. 

Considering a system

      (7)

 Minimum cost function of the controller is 
calculated by approximating Q and R values.

      (8)

where
 Where, A and B are state dynamics and input 

matrices respectively. Q is the cost of the deviation of 
the state variable values from the equilibrium point. R is 
the control effort cost. It consists of either unit value or 
symmetric matrix. Matrix Q and R determine relative 
importance of error and energy loss respectively. Q and 
R values are estimated as per expected performance 
criterion
 Optimal control vector is given by matrix 'K' such 
that performance index can be minimized

u(t) = Kx(t)
_ -1 T        K = R B P  (9)

 To get the value of P, algebraic Riccati equation 
below is solved (assuming infinite horizon problem)

-1 TTPA + A P + Q - PBR B P = 0  (10)

 K matrix can also be obtained by using following 
MATLAB command

K = lqr (A, B, Q, R)   (11)

By Changing Q, different system responses are 
obtained. The system will behave more robust to 
disturbance and the settling time will be shorter if Q is 
higher. 

IV. LEARNING WITH DENOISING 

AUTOENCODER

 It is quite clear from the above discussion that 
simulation results cannot authentically represent the 
practical real world systems. That being said, 
simulations still hold an important place in the whole 
design and development process as they provide a 
mathematical basis for the whole system to be 
designed. Therefore, if we are somehow able to design 
a model or a simulation that can very accurately 
represent the practical system we would have the best 
of both worlds. The fundamental reason for such a huge 
discrepancy between simulation and real world results 
is due to the inherent nonlinearities in the real world 

 From forces in horizontal direction (for the cart), 
the equation below can be obtained

      (1)

where,
F =  Force acting on cart
x =  Cart position
f =  damping coefficient
N =  Force exerted on the cart in horizontal direction 

due to motion of the pendulum 
M = mass of the cart
 From the force acting on the rod in horizontal 
direction we get

      (2)

l =  length of the pendulum rod
= Angle between the rod and vertically upward 

direction.
m =  mass of the pendulum rod 
Equation (2) can be written as,

      (3)

 Substituting equation (3) into equation (1), first 
equation for non-linear system obtained is

               (4)

 Similarly, combining the forces acting on the rod 
in vertical direction, we obtain second equation of 
motion

      (5)

 Linearization of equations (4) and (5) about the 

equilibrium point     
results in the following state space equation in matrix 
form.

      (6a)

where u=F and the output equations can be written as,

      (6b)
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Fig. 3. Overall structure of a Denoising Autoencoder

 The input to the autoencoder is mapped in terms of 
a sigmoid function

      (12)

 Where W is a weighting matrix and b is an offset 
vector. The output is reconstructed as

      (13)

 Where W '  and b '  are appropriately sized 
parameters. Backpropagation is used to modify the 
values of connected weights to achieve desired level of 
distortion removal through successive iteration. So it 
will result in an error signal, if we keep on comparing 
the resulted outputs of network with the target values. 
Then the error signal is fed back in the network and the 
values of layer's weights are reset accordingly. The 
most commonly used method to find value of error 
signal(s) is the mean square error function (MSE) 
represented hereunder

      (14)

 Where n is number of training samples, m is output 
th

vector dimension, y  is network output of i  neuron for pi
th

pattern p, and t  is target value of i  component for pi

pattern p.
 Back propagation produces a gradient descent 
procedure to minimize the value of error signal E as 
follows,

      (15)

 Where W  indicates connection weight between ij

neurons i and j. η represents learning rate.
 The above mention two stages perform their 
functions alternatively till target output of the network 
can be approximated with the smallest error.

systems that can never be modeled rigorously and 
thoroughly by a simulation. This means that it would be 
quite difficult to design a model that can simulate the 
results closer to the real world values.
 An alternate approach to solving the problem of 
this discrepancy between simulated and real world 
results would be to find patterns in these discrepancies 
and adjust the simulation results accordingly. If we are 
able to do so this would allow us to provide simulation 
results which are quite close to the real world results 
and thus make these simulations very effective.
 It  should be remembered that since the 
mathematical models used in simulations are designed 
based on the real world systems they both have the 
same basic structure. They should ideally provide 
similar results. The results vary due to the difference in 
the model and real world that are nonlinear in nature. In 
order to improve the accuracy of the simulations we 
need to capture this nonlinearity and compensate for it. 
 Neural Networks have long being used as a system 
to detecting and modeling nonlinear class boundaries. 
They have been able to learn nonlinear boundary 
between classes based on a set of labeled data. This 
ability to learn nonlinear boundaries make them quite 
an interesting and effective tool.
 Recent advancements in neural network research, 
especially deep learning, have introduced a new kind of 
neural network called Autoencoder. An Autoencoder is 
a neural network with a single hidden layer and where 
the output layer and the input layer have the same size. 
The weights of autoencoder can be trained with 
gradient decent algorithm also known as back 
propagation algorithm [xxxiv]. Denoising autoencoder 
is straight forward variant of the basic autoencoder. 
Denoising autoencoder is trained to reconstruct a clean 
input from its corrupted version. They are created by 
establishing a hidden layer which is larger in size then 
the input and output layers (both are of same size). The 
arrangement makes the whole system sparse which in 
turn allows us to detect and remove noise present in the 
input data. Denoising autoencoder does two things i.e. 
it tries to encode the input as well as undo the effect of 
corruption process stochastically applied to the input of 
autoencoder. Hence denoising autoencoder is trying to 
predict the corrupted value and refine it, to remove 
distortion. Denoising autoencoders are commonly used 
in deep learning applications to develop a more 
generalized model of the input data. Fig. 3 shows the 
overall structure of a denoising autoencoder whereas 
Fig. 4 shows how neurons in each of the layers are 
connected. Specifically, we have shown three layers i.e. 
input layer (with neurons I , I ), hidden layer (with 1 2

neurons H , H , and H ), and output layer (with neurons 1 2 3

O , O ). In general number of layers and number of 1 2

neurons per layer may vary from case to case.
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exploited here. The basic idea is that if the denoising 
autoencoder can detect and model the discrepancy 
between the simulated and actual results we use them to 
transform the simulated results and bring them closer to 
the actual results. 

V. SIMULATIONS AND EXPERIMENTAL 

RESULTS

A. Simulations of proposed LQR controller model
 Fig. 5 presents the proposed LQR controller model 
developed in MATLAB GUI environment. Initially, 
cart and rod's reference positions are used and 
compared with cart and rod's actual positions. Swing up 
controller swings the rod from downward position to 
upright position using the energy efficient variable.
 In addition, the rod is kept in the upright position 
by correct calculation of instantaneous rod angle and 
cart position.

Fig. 4. Internal Connections within a Denoising 
Autoencoder (2-3-2 example)

 It is this ability of the autoencoders to detect and 
model the noise in the input signal that is being 

I1

I2

H1

H2

H3

O1

O2

Fig. 5. Snapshot of the part of SIMULINK Model

of Q and R. By changing the gain, different responses 
are observed which are presented later in the section. Q 
is selected as a diagonal matrix with equal weights 
along the diagonal. Therefore the value of the weight in 
Q is taken as its magnitude. This choice may not be the 
best for all applications but since the objective here is 
educational, this simplified selection is not too 
constraining. Note that Q is a 4 x 4 matrix and R is a 
scalar for the state space linear model presented in (6a) 
and (6b)).
 When gains 1, 2, and 3 are tested on MATLAB, the 
cart drifts towards a direction. Pendulum rod achieves 
0° and maintains this angle throughout. However, when 
these values are tested on hardware structure, the 
responses appear to be different from MATLAB 
simulation results. Cart slides towards one end at a very 
high speed due to which pendulum angle does not 
stabilize.

 Inputs are fed into LQR controller to control 
pendulum angle and cart position. Since it is a feedback 
system, instantaneous position of cart and rod angle is 
fed into input of the system which is compared with 
reference position and angle. Pendulum angle  should 
be stabilized at 0º and cart position should drift to 
stabilize the pendulum system. 

B. Hardware Results
 Table I shows the parameter values for the 
hardware used. These values are for the pendulum and 
cart system shown in Fig. 1. Table II shows the 
controller gains and Q/R ratios for the designed 
controllers. The gain values have been computed using 
equations (9) and (10). Q/R ratios have been selected 
carefully in order to obtain results for a fairly broad 
range of values. Note that Q and R are not of same size 
therefore here by Q/R we mean the ratio of magnitudes 
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stabilize the rod in upright position. Pendulum rod 
stabilizes and slight jitters are observed in motor once 
stabilizing the rod. The responses of gain 4 tested on 
both MATLAB and hardware is shown in Fig. 6.

 When gain 4 is used as input parameters, 
MATLAB simulation results show cart drift slightly to 
attain stability and pendulum rod gets stabilized in 2 
seconds. When these parameters are tested on hardware 
structure, cart drifts and cover some distance to 
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Symbol

M

m

b = f

L

I

Cart mass

Rod mass

Friction coefficient of cart

Rod distance from rotation axis center to the rod mass center

Rod Inertia

Description

1.096 kg

0.109 kg

0.1 N/m/sec

0.25 m
20.00223 kgm

Actual value in hardware used

TABLE I

PARAMETER VALUES FOR THE INVERTED PENDULUM HARDWARE

TABLE II

CONTROLLER GAINS AND CORRESPONDING Q/R RATIO

Sr. Number

Gain 1

Gain 2

Gain 3

Gain 4

Gain 5

Gain 6

Kx

-0.3162

-1

-3.1623

-10

-22.36

-31.82

Kx

-3.4201

-4.0709

-6.4282

-14.7898

-30.40

-42.16

Ka

24.833

26.5105

33.8787

64.9447

125.68

171.74

Ka

4.7469

5.185

7.3334

16.43

33.98

47.24

Q/R

0.1

1

10

100

500

1000

Fig. 6. Gain 4 responses tested on MATLAB and hardware
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Notice the oscillations observed in pendulum rod 
angular velocity.

 When gain 5 is used as input parameters, 
MATLAB simulations and hardware results are shown 
in Fig. 7. Pendulum rod stabilizes at 3.14 radians. 
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Fig. 7. Gain 5 responses tested on MATLAB and hardware

hardware structure, swing up controller swings the rod 
by drifting cart and move the rod to upright position and 
rod gets stabilized.

 When gain 6 is used as LQR parameters, the 
responses of MATLAB simulation and hardware are 
shown in Fig. 8. When these values are tested on 

Fig. 8. Gain 6 responses tested on MATLAB and hardware
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are satisfactory. There is a remarkable difference in 
practical and simulation based results; clearly, the 
methodology described is not in general going to work 
right away (there may be exception of course). This 
poses a huge problem for systems such as satellites and 
maybe rocket launchers where obtaining practical 
results and iterating on them is very costly. Hence there 
is a need for rigorous research in this area and to devise 
a method to minimize the differences and gaps between 
simulations and hardware implementation. The above 
discussion prompts a need to check whether feedback 
control properties such as robustness and disturbance 
rejection hold with simulation based designs, and if 
yes, to what extent?

C. Results with denoising autoencoders
 A denoising autoencoder has been developed to 
test this hypothesis with 4 neurons each in input and 
output layers and 16 neurons in the hidden layer. One 
set of simulated and actual results on the designed 
controller have been used for training the autoencoder. 
Two set of simulated results have been used for testing 
the autoencoder with the actual results as the ground 
truth for the experimentation. During training the 
simulated results have been used as input and the actual 
results have been used as the output that the 
autoencoder is supposed to achieve. 
 Once the autoencoder has been trained the results 
from the other two simulations are provided to the 
neural network and the output was recorded and 
compared to the actual results. Fig. 9 and Fig. 10 show 
the simulated, actual and the adjusted results. It is quite 
clear from the graphs that the prediction from the 
autoencoder is much closer to the actual results than the 
simulation results.

 Based on the results obtained, there are many 
issues to be discussed related to the differences that are 
evident in the plots above. 
I. It may be noticed that there is a 3 degrees steady 

state error in the pendulum angle in all three cases. 
The reason for this error is not easy to find since 
there are more than one possibility. First, the 
pendulum hardware may not be exactly horizontal, 
second, there may be a bias error in the encoder, 
third, there can be a steady state error due to 
unknown dynamics of the system, fourth, the 
signal processing performed on the encoder 
reading or overall coding involved in the project 
may have some logical error. 

ii. Another major difference between simulation and 
experimental results evident in the plots is in the 
rate of change of pendulum angle. This may be 
problematic when the practical application 
requires the pendulum to be steady after some time 
e.g. in Segway. 

iii. The steady state of the cart position in practical and 
simulation results also do not match. This may be 
solved by iterating on the Q matrix selection. But 
the main issue here is that with the current 
selection of Q, simulations have shown good 
results for the cart position. How would one know 
if the designed controller is going to work well on 
the real hardware or not?

 In general, the results indicate that the simulations 
are almost of no use for precise practical applications in 
case of an inverted pendulum. This finding places a 
question mark on the authenticity of the simulation 
based research work and on the simulation based 
design methodology i.e. design a controller using 
mathematical model, perform simulations, and apply 
the controller on real hardware if the simulation results 
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Fig. 9. Training Results from Gain 5
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in state variable values from simulation results and 
from experimental results. Fifth column of the table 
presents the value of the variance of the difference in 
state variable values from neural network based 
predictions and from experimental results. Note that 
the mean and variance of almost all the errors is orders 
of magnitude smaller in case of Neural Network 
predictions.

 Table III presents quantitative results from the 
autoencoder predictions. Second column of the table 
presents the mean value of the difference in state 
variable values from simulation results and from 
experimental results. Third column of the table 
presents the mean value of the difference in state 
variable values from neural network based predictions 
and from experimental results. Fourth column of the 
table presents the value of the variance of the difference 
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Fig. 10. Training Results from Gain 6

State

TABLE III

QUANTITATIVE RESULTS FROM AUTOENCODER PREDICTION

x (m)

x (m/sec)

 (deg)

 (deg/sec)

-0.2528

-0.0168

-2.9491

-0.6491

Mean error between 
simulations and 

actual results

-0.0026

0.0021

0.0472

0.0074

Mean error between
NN prediction and 

actual results

0.0044

0.0057

0.3920

11.5442

Variance of error 
between simulations 

and actual results

0.0009

0.0040

0.5385

0.0728

Variance of error 
between NN 

prediction and actual 
results

predicted without performing any experiment on the 
actual hardware.
 Furthermore, the accuracy of the prediction is 
proportional to the size of the training data set. But for 
locally linear systems such as inverted pendulum, a 
fairly small training set may be enough for sufficient 
accuracy in the prediction. Suchis the case in this paper 
where we have trained the network on one set of gains 
(gain 4 in Table II) and it is able to predict the results of 
gain 5 and gain 6 with reasonable accuracy. This means 
that there is no need to retrain the neural network in the 
event of controller redesign. This is an encouraging  

VI. CONCLUSIONS

 Prediction of the behavior (dynamics) of actual 
hardware of an inverted pendulum has been discussed. 
It has been demonstrated through simulations and 
experimental results that the proposed denoising 
autoencoders based method for prediction is more 
accurate than traditional simulation method.
 The additional accuracy comes at the cost of 
having to perform some experiments on the hardware 
(in order to generate the training data set). Whereas in 
traditional simulations, the behavior of the hardware is 



39

(pp. 405-410). IEEE.
[xi] H. Wang, A. Chamroo, C. Vasseur, and V. 

Koncar, 2008, June. Stabilization of a 2-DOF 
inverted pendulum by a low cost visual 
feedback. In American Control Conference, 
2008 (pp. 3851-3856). IEEE.

[xii] J. Jie and T. Wei, 2012, May. Influence analysis 
of initial state parameters on linear inverted 
pendulum system performance. In Control and 
Decision Conference (CCDC), 2012 24th 
Chinese (pp. 3498-3501). IEEE.

[xiii] K. Mahmud, 2013. Design and Analysis of 
Control of an Inverted Pendulum System by 
MATLAB. Global High Tech Congress on 
Electronics (GHTCE), IEEE (2013): 207-211.

[xiv] K. Perev, 2011. Inverted Pendulum Control; an 
Overview.Information Technologies and 
Control, (2011) 34-41

[xv] V. Kurdekar, and B. S.Borkar, 2013. "Inverted 
Pendulum Control: A Brief Overview." 
International Journal of Modern Engineering 
Research (IJMER) 3.5, 2924- 2927.
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pp.161-180.

[xvii] W. Li, H. Ding, and K. Cheng, 2012, September. 
An investigation on the design and performance 
assessment of double-PID and LQR controllers 
for the inverted pendulum. In Control 
(CONTROL), 2012 UKACC International 
Conference on (pp. 190-196). IEEE.

[xviii] L. B. Prasad, B. Tyagi, and H.O. Gupta, 2012, 
May. Modelling and simulation for optimal 
control of nonlinear inverted pendulum 
dynamical system using PID controller and 
LQR. In Modelling Symposium (Ams), 2012 
Sixth Asia (pp. 138-143). IEEE.

[xix] H. Wang, A. Chamroo, C. Vasseur, and             
V. Koncar, 2008, June. Stabilization of a 2-DOF 
inverted pendulum by a low cost visual 
feedback. In American Control Conference, 
2008 (pp. 3851-3856). IEEE.

[xx] H. Leeand J. Lee, 2012, November. Driving 
control of mobile inverted pendulum. In 
Ubiquitous Robots and Ambient Intelligence 
(URAI), 2012 9th International Conference on 
(pp. 449-453). IEEE.

[xxi] H. Lee and S. Jung, 2012. Balancing and 
navigation control of a mobile inverted 
pendulum robot using sensor fusion of low cost 
sensors. Mechatronics, 22(1), pp.95-105.

[xxii] J. Lee and J. M. Lee, 2013. A study on the visual 
servoing of autonomous mobile inverted 
pendulum. Journal of Institute of Control, 
Robotics and Systems, 19(3), pp.240-247.

[xxiii] D. Choi and J. H. Oh, 2008, May. Human-
friendly motion control of a wheeled inverted

result. 
 The approach presented in this paper can be 
extended in two ways. One way is to enhance the 
internal structure of the autoencoders and find out if the 
learning accuracy can be improved. Other learning 
methods may also be used such as reinforcement 
learning and its variants. Second approach to extend 
this work is to prove some analytical properties such as 
independence of the approach from the control law 
used. Another interesting property may be to find out 
the upper bound on the prediction error for general 
applications or specific ones.
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